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Abstract We analyze several families of two-dimensional quantum random walks. The fea-
sible region (the region where probabilities do not decay exponentially with time) grows
linearly with time, as is the case with one-dimensional QRW. The limiting shape of the
feasible region is, however, quite different. The limit region turns out to be an algebraic set,
which we characterize as the rational image of a compact algebraic variety. We also compute
the probability profile within the limit region, which is essentially a negative power of the
Gaussian curvature of the same algebraic variety. Our methods are based on analysis of the
space-time generating function, following the methods of Pemantle and Wilson (J. Comb.
Theory, Ser. A 97(1):129–161, 2002).
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1 Introduction

Quantum random walk, as proposed by [1], describes the evolution in discrete time of a sin-
gle particle on the integer lattice. The Hamiltonian is space- and time-invariant. The allowed
transitions at each time are a finite set of integer translations. In addition to location, the
particle possesses an internal state (the chirality), which is necessary to make the evolution
of the location nondeterministic. A rigorous mathematical analysis of this system in one
dimension was first given by [2]. The particle moves ballistically, meaning that at time n,
its distance from the origin is likely to be of order n. By contrast, the classical random walk
moves diffusively, being localized to an interval of size

√
n at time n.

A very similar process may be defined in higher dimensions. In particular, given a subset
E ⊂ Z

d with cardinality k and a k × k unitary matrix U , there is a corresponding space- and
time-homogeneous QRW in which allowed transitions are translations by elements of E and
evolution of chirality is governed by U . When E is the set of signed standard basis vectors
we call this a nearest neighbor QRW; for example in two dimensions, a nearest neighbor
walk has E = {(0,1), (0,−1), (1,0), (−1,0)}; a complete construction of quantum random
walk is given in Sect. 2.1 below. As far as we know, no rigorous analysis of two-dimensional
QRW has been published. The question of describing the behavior of two-dimensional QRW
was brought to our attention by Cris Moore (personal communication). In the present paper,
we answer this question by proving theorems about the limiting shape of the feasible region
(the region where probabilities do not decay exponentially with time) for two-dimensional
QRW, and by giving asymptotically valid formulae for the probability amplitudes at specific
locations within this region.

Our analyses begin with the space-time generating function. This is a multivariate ratio-
nal function which may be derived without too much difficulty. The companion paper [7]
introduces this approach and applies it to an arbitrary one-dimensional QRW with two chi-
ralities (k = 2). This approach allows one to obtain detailed asymptotics such as an Airy-type
limit in a scaling window near the endpoints. As such, it improves on the analysis of [2] but
not on the more recent and very nice analysis of [9]. In one dimension, when the number
of chiralities exceeds two, N. Konno [12] found new behavior that is qualitatively differ-
ent from the two-chirality QRW. Forthcoming work of the last author with T. Greenwood
uses the generating function approach to greatly extend Konno’s findings. The generating
function approach, however, pays its greatest dividends in dimension two and higher. This
approach is based on recent results on asymptotics of multivariate rational generating func-
tions that allow nearly automatic transfer from rational generating functions to asymptotic
formulae for their coefficients [4, 13–15]. Based on these results, analyses of any instance of
a two-dimensional QRW becomes relatively easy, although in some cases new versions of
the results under weaker hypotheses were required. Empirically computed probability pro-
files such as are shown in Fig. 1(a) are explained by algebraic computations, leading to limit
shapes as shown in Fig. 1(b). We computed probability profiles for a number of instances of
two-dimensional QRW. The pictures, which appear scattered throughout the paper, are quite
varied. Not only did we find these pictures visually intriguing, but they pointed us toward
some refinements of the theoretical work in [13], which we now describe, beginning with a
more detailed description of the two plots.

On the right is depicted the probability distribution for the location of a particle after
200 steps of a quantum random walk on the planar integer lattice; the particular instance
of QRW is a nearest neighbor walk (E = {(0,1), (0,−1), (1,0), (−1,0)}) whose unitary
matrix is discussed in Sect. 4. Greater probabilities are shown as darker shades of grey.
The feasible region, where probabilities are not extremely close to zero, is the diamond with
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Fig. 1 Fixed-time empirical plot versus theoretical limit

vertices at the midpoints of the 400×400 square. The feasible region appears to be a slightly
rounded diamond.

In his Masters Thesis, the second author computed an asymptotically valid formula for
the probability amplitudes associated with some instances of QRW. As n → ∞, the prob-
abilities become exponentially small outside of a certain algebraic set �, but are �(n−2)

inside of �. Theorem 4.5 of [6] proves such a shape result for a different instance of two-
dimensional QRW and conjectures it for this one, giving the believed characterization of �

as an algebraic set. The plot in Fig. 1(b) is a picture of this characterization, constructed by
parameterizing � by patches in the flat torus T0 := (R/2πZ)2 and then depicting the patches
by showing the image of a grid embedded in the torus.

When the plot was constructed, it was intended only to exhibit the overall shape. Never-
theless, it is visually obvious that significant internal structure is duplicated as well. Identical
dark regions in the shape of a Maltese cross appear inside each of the two figures. To explain
this, we consider the map � : T → R

2 whose image produces the region �. Let V denote
the pole variety of the generating function F for a given QRW, that is, the complex algebraic
hypersurface on which the denominator H of F vanishes. Let V1 denote the intersection of
V with the unit torus T. It is easy to solve for the third coordinate z as a local function of x

and y on V1 and thereby obtain a piecewise parametrization

(α,β) �→ (
eiα, eiβ, eiφ(α,β)

)

of V1 by patches in R
2. Theorem 3.3 extends the results of [13] to show that each point z of

V1 produces a polynomially decaying contribution to the probability profile for movement
at velocity (r, s) which is the image of z under the logarithmic Gauss map n of the surface
V1 at z:

n(z) :=
(

x
∂H

∂x
,y

∂H

∂y
, z

∂H

∂z

)
.

Formally, the n maps into the projective space RP
2, but we map this to R

2 by taking the pro-
jection π(r, s, t) := (r/t, s/t,1). In other words, the plot is the image of the grid (Z/100Z)2
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under the following composition of maps:

(Z/100Z)2 ι−→ S1 × S1 (1,1,φ)−−−→ V n−→ RP
2 π−→ R

2. (1.1)

The intensity of an image of a uniform grid of dots is proportional to the inverse of the
Jacobian of the mapping. The Jacobian of the composition is the product of the Jacobians
of the factors, the most significant factor being the Gauss map, n. Its Jacobian is just the
Gaussian curvature (in logarithmic coordinates). The darkest regions therefore correspond
to the places where the curvature of log V1 vanishes. Alignment of this picture with the em-
pirical amplitudes can only mean that the formulae for asymptotics of generating functions
given in [13] blow up when the Gaussian curvature of log V1 vanishes. This observation
allowed us to produce new expressions for the quantities in the conclusions of theorems
in [13], where lengthy polynomials were replaced by quantities involving Gaussian curva-
tures.

To summarize, the purpose of this paper is twofold:

1. In Theorem 4.9, we prove the shape conjecture from [6]; further instances of this are
proved in Theorems 4.2 and 4.7.

2. In Theorems 3.3 and 3.5 we reformulate the main result in [13] to clarify the relation
between the asymptotics of a multivariate rational generating function and the curvature
of the pole variety in logarithmic coordinates.

The organization of the remainder of this paper is as follows. Section 2 gives some back-
ground on quantum random walks, notions of Gaussian curvature, amoebas of Laurent poly-
nomials, the multivariate Cauchy formula, and certain standard applications of the stationary
phase method to the evaluation of oscillating integrals. Section 3 contains general results on
rational multivariate asymptotics that will be used in the derivation of the QRW limit theo-
rems. In particular, Theorem 3.3 gives a new formulation of the main result of [13], while
Theorem 3.5 proves a version of these results in situations where the geometry of V1 is more
complicated than can be handled by the methods of [13]. Finally, Sect. 4 applies these results
to a collection of instances of two-dimensional nearest neighbor QRW in which the unitary
matrices are elements of one-parameter families named S(p),A(p) and B(p), 0 < p < 1.
This results in Theorems 4.2, 4.7 and 4.9 respectively. The QRW in Fig. 1 has unitary ma-
trix B(1/2), while Figs. 2 and 3 show examples of the S(1/2) and A(5/9) quantum random
walks.

2 Preliminaries

2.1 Quantum Random Walks

The quantum random walk is a model for the motion of a single quantum particle evolving
in Z

d under a time and translation invariant Hamiltonian for which the probability profile of
a particle after one time step, started from a known location, is uniform on the neighbors.
Such a process was first constructed in [1]. Let d ≥ 1 be the spatial dimension. Let E =
{v(1), . . . ,v(k)} ⊆ Z

d be a set of finite cardinality k. Let U be a unitary matrix of size k.
The set Z

d × E indexes the set of pure states of the QRW with parameters k,E and U . Let
Id ⊗ U denote the operator that sends (r,v(j)) to (r,Uv(j)), that is, it leaves the location
unchanged but operates on the chirality by U . Let σ denote the operator that sends (r,v(j))

to (r + v(j),v(j)), that is, it translates the location according to the chirality and does not
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Fig. 2 The S(1/2) QRW

Fig. 3 The A(5/9) QRW

change the chirality. The product σ · (Id ⊗ U) is the operator we call QRW with parameters
k,E and U . Let us denote this by Q.

For 1 ≤ i, j ≤ k and r ∈ Z
k ,

ψ(i,j)
n r := 〈e0,i |Qn|er,j 〉

denotes the amplitude at time n for a particle starting at location 0 in chirality i to be in
location r and chirality j . Let z denote (z1, . . . , zd+1) and define

F (i,j)(z) :=
∑

n,r

ψ(i,j)
n (r)zr1

1 · · · zrd
d zn

d+1 (2.1)
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which denotes the spacetime generating function for n-step transitions from chirality i to
chirality j and all locations. Let F(z) denote the matrix (F (i,j))1≤i,j≤k . Let M denote the
diagonal matrix whose entries are the monomials {zr : r ∈ E}. When d = 2 we use (x, y, z)

for (z1, z2, z3) and (r, s) for r; for a two-dimensional nearest neighbor QRW, therefore, the
notation becomes

F (i,j)(x, y, z) =
∑

n,r,s

ψ(i,j)
n (r, s)xryszn

and

M =

⎛

⎜⎜
⎝

x 0 0 0
0 x−1 0 0
0 0 y 0
0 0 0 y−1

⎞

⎟⎟
⎠ .

An explicit expression for F may be derived via an elementary enumerative technique known
as the transfer matrix method [11, 16]. For d = 1 and a particular choice of U (the Hadamard
matrix), this rational function is computed in [2]. In [7, Sect. 3], the following formula is
given for the matrix generating function F:

F(z) = (I − zd+1MU)−1 . (2.2)

The (i, j)-entry of the matrix, F (i,j), may therefore be written as a rational function G/H

where

H = det(I − zd+1MU).

The following result is easy but crucial. It is valid in any dimension d ≥ 1. Let Td denote
the unit torus in C

d .

Proposition 2.1 (Torality) The denominator H of the spacetime generating function for a
quantum random walk has the property that

(z1, . . . , zd) ∈ Td and H(z) = 0 =⇒ |zd+1| = 1. (2.3)

Proof If (z1, . . . , zd) ∈ Td then M is unitary, hence MU is unitary. The zeros of det(I −
zd+1MU) are the reciprocals of eigenvalues of MU , which are therefore complex numbers
of unit modulus. �

Proposition 2.2 Let H be any polynomial and let V denote the pole variety, namely the set
{z : H(z) = 0}. Let V1 := V ∩ Td+1. Assume the torality hypothesis (2.3). Let p ∈ V1 be any
point for which ∇H(p) �= 0. Then V1 is a smooth d-dimensional manifold in a neighborhood
of p.

Proof We will show that ∂H/∂zd+1(p) �= 0. It follows by the implicit function theorem
that there is an analytic function g : C

d → C such that for z in some neighborhood of p,
H(z) = 0 if and only if zd+1 = g(z1, . . . , zd)). Restricting (z1, . . . , zd) to the unit torus, the
torality hypothesis implies zd+1 = 1, whence V1 is locally the graph of a smooth function.

To see that ∂H/∂zd+1(p) �= 0, first change coordinates to zj = pj exp(iθj ) and zd+1 =
pd+1 exp(iσ ). Letting H̃ := H ◦ exp, the new torality hypothesis is (θ1, . . . , θd) ∈ R

d and
H(θ1, . . . , θd , σ ) = 0 implies σ ∈ R. We are given ∇H̃ (0) �= 0 and are trying to show that
∂H̃/∂σ(0) �= 0.
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Fig. 4 Moore’s Hadamard QRW

Consider first the case d=1 and let θ :=θ1. Assume for contradiction that ∂H̃/∂σ(0,0) =
0 �= ∂H̃/∂θ(0,0). Let H̃ (θ, σ ) =∑

j,k≥0 bj,kθ
jσ k be a series expansion for H̃ in a neigh-

borhood of (0,0). We have b0,0 = 0 �= b1,0. Let � be the least positive integer for which
the b0,� �= 0; such an integer exists (otherwise H̃ (0, σ ) ≡ 0, contradicting the new toral-
ity hypothesis) and is at least 2 by the vanishing of ∂H/∂σ(0,0). Then there is a Puiseux
expansion for the curve {H̃ = 0} for which σ ∼ (b1,0θ/b0,�)

1/�. This follows from [8] al-
though it is quite elementary in this case: as σ, θ → 0, the power series without the (1,0)

and (0, �) terms sums to O(|θ |2 + |θσ | + |σ |�+1) = o(|θ | + |σ |�) (use Hölder’s inequal-
ity); in order for H̃ to vanish, one must therefore have b1,0θ + b0,�σ

� = o(|θ | + |σ |�), from
which σ ∼ (b1,0θ/b0,�)

1/� follows. The only way the new torality hypothesis can now be
satisfied is if � = 2 and b1,0θ/b0,� is always positive; but θ may take either sign, so we have
a contradiction.

Finally, if d > 1, again we must have b0,...,0,� �= 0 in order to avoid H̃ (0, . . . ,0, σ ) ≡ 0.
Let r ∈ R

d be any vector not orthogonal to ∇H̃ (0) and let G(θ,σ ) := H̃ (r1θ, . . . , rdθ, σ ).
Then ∂G/∂θ(0,0) �= 0 = ∂G/∂σ(0,0) and the new torality hypothesis holds for G; a con-
tradiction then results from the above analysis for the case d = 1. �

A Hadamard matrix is one whose entries are all ±1. There is more than one rank-4
unitary matrix that is a constant multiple of a Hadamard matrix, but for some reason the
“standard Hadamard” QRW in two dimensions is the QRW whose unitary matrix is

UHad := 1

2

⎛

⎜⎜
⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞

⎟⎟
⎠ .

Shown in Fig. 4(a) is a plot of the probability profile for the position of a particle performing
a standard Hadamard QRW for 200 time steps. This is the only two-dimensional QRW we
are aware of for which even a nonrigorous analysis had previously been carried out. On the
right, in Fig. 4(b), is the analogous plot of the region of non-exponential decay.
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Another 4 × 4 unitary Hadamard matrix reflects the symmetries of (Z/(2Z))2 rather than
Z/(4Z):

ŨHad := 1

2

⎛

⎜⎜
⎝

1 1 1 1
−1 1 −1 1
1 −1 −1 1

−1 −1 1 1

⎞

⎟⎟
⎠ .

This matrix also goes by the name of S(1/2) and is a member of the first family of QRW
that we will analyze. There is no reason to stick with Hadamard matrices. Varying U further
produces a number of other probability profiles including the families S(p),A(p) and B(p)

analyzed in Sect. 4.

2.2 Differential Geometry

For a smooth orientable hypersurface V ⊂ R
d+1, the Gauss map n sends each point p ∈ V

to a consistent choice of normal vector. We may identify n(p) with an element of Sd . For a
given patch P ⊂ V containing p, let n[P ] := ∪q∈P n(q), and denote the area of a patch P in
either V or Sd as A[P ]. Then the Gauss-Kronecker curvature of V at p is defined as

K := lim
P→p

A(n[P ])
A[P ] . (2.4)

When d is odd, the antipodal map on Sd has determinant −1, whence the particular choice
of unit normal will influence the sign of K, which is therefore only well defined up to sign.
When d is even, we take the numerator to be negative if the map n is orientation reversing
and we have a well defined signed quantity. Clearly, K is equal to the Jacobian of the Gauss
map at the point p. For computational purposes, it is convenient to have a formula for the
curvature of the graph of a function from R

d to R.

Proposition 2.3 Suppose that in a neighborhood of the point p, the smooth hypersurface
V ⊆ R

d+1 is the graph of a function h mapping the origin to p; that is, in some neighborhood
of the origin, V = {(x, τ ) : τ = h(x)}. Let ∇ := ∇h(0) and H := det( ∂h

∂ui∂uj
(0))1≤i,j≤d denote

respectively the gradient and Hessian determinant of h at the origin. Then the curvature of
V at the origin is given by

K = H
√

1 + |∇|2 2+d
.

The square root is taken to be positive and in case d is odd, the curvature is with respect to
a unit normal in the direction in which the dependent variable increases.

Proof Let X : U ⊆ R
d → R

d+1 denote the parameterizing map defined by

X(u) := (u1, . . . , ud, h(u1, . . . , ud))

on a neighborhood U of the origin. Let π be the restriction to V of projection of R
d+1 onto

the first d coordinates, so π inverts X on U . Define a vector

N(u) :=
(

∂h

∂u1
, . . . ,

∂h

∂ud

,−1

)
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normal to V at X(u) and let N̂ denote the corresponding unit normal N/|N|. Observe that
|N| = √

1 + |∇h|2, and in particular, that |N(0)| = √
1 + |∇|2. The Jacobian of π at the

point p is, up to sign, the cosine of the angle between the zd+1 axis and the normal to the
tangent plane to V at p. Thus

|J (π(p))| = |N̂ · ed+1|
|N̂||ed+1|

= 1/|N(0)|
1 · 1

= 1
√

1 + |∇|2 . (2.5)

The Gaussian curvature at the point p is, by definition, the Jacobian of the map N̂ ◦ π

at p. Using J to denote the Jacobian, write N̂ as | · | ◦ N and apply the chain rule to see that

K = J (π(p)) · J (N)(0) · J (| · | )(N(0)) = 1
√

1 + |∇|2 · J (N)(0) · J (| · | )(∇,−1). (2.6)

Here, | · | is considered as a map from R
d × {−1} to Sd ; at the point y, its differential is an

orthogonal projection onto the plane orthogonal to (y,−1) times a rescaling by |(y,−1)|−1,
whence

J (| · | )(y) =
√

1 + |y|2 −1√
1 + |y|2 −d

. (2.7)

Because N maps into the plane zd+1 = −1 we may compute J (N) from the partial deriva-
tives ∂Ni/∂xj = ∂2h/∂xi∂xj , leading to J (N)(0) = H. Putting this together with (2.7) gives

J (N̂)(0) = H
√

1 + |∇|2 d+1 (2.8)

and using (2.6) and (2.5) gives

K = H
√

1 + |∇|2 d+2 ,

proving the proposition. �

We pause to record two special cases, the first following immediately from ∇h(0) = 0.
If Q is a homogeneous quadratic form, we let ‖Q‖ denote the determinant of the Hessian
matrix of Q; to avoid confusion, we point out that the diagonal elements aii of this matrix
are twice the coefficient of x2

i in Q. The determinant will be the same when the coefficients
of ‖Q‖ may be computed with respect to any orthonormal basis.

Corollary 2.4 Let P be the tangent plane to V at p and let v be a unit normal. Suppose that
V is the graph of a smooth function h over P , that is,

V = {p + u + h(u)v : u ∈ U ⊆ P}.

Let Q be the quadratic part of h, that is, h(u) = Q(u) + O(|u|3). Then the curvature of V
at p is given by

K = ‖Q‖.
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Corollary 2.5 (Curvature of the zero set of a polynomial) Suppose V is the set {x : H(x) =
0} and suppose that p is a smooth point of V , that is, ∇H(p) �= 0. Let ∇ and Q denote
respectively the gradient and quadratic part of H at p. Let Q⊥ denote the restriction of Q

to the hyperplane ∇⊥ orthogonal to ∇ . Then the curvature of V at p is given by

K = ‖Q⊥‖
|∇|d . (2.9)

Proof Replacing H by |∇|−1H leaves V unchanged and reduces to the case |∇H(p)| = 1;
we therefore assume without loss of generality that |∇| = 1. Letting u⊥ + λ(u)∇ denote the
decomposition of a generic vector u into components in 〈∇〉 and ∇⊥, the Taylor expansion
of H near p is

H(p + u) = ∇ · u + Q⊥(u) + R

where R = O(|u⊥|3 + |λ(u)||u⊥|). Near the origin, we solve for λ to obtain a parametriza-
tion of V by ∇⊥:

λ(u) = Q⊥(u) + O(|u|3).
The result now follows from the previous corollary. �

2.3 Amoebae and Cauchy’s Formula

Let F = G/H be a quotient of Laurent polynomials, with pole variety V := {z : H(z) = 0}.
Let Log : (C∗)d+1 → R

d+1 denote the log-modulus map, defined by

Log (z) := (log |z1|, . . . , log |zd+1|).
The amoeba of H is defined to be the image under Log of the variety V . To each component
B of the complement of this amoeba in R

d+1 corresponds a Laurent series expansion of F .
When F is the (d + 1)-variable spacetime generating function of a d-dimensional QRW, we
will be interested in the component B0 containing a translate of the negative zd+1-axis; this
corresponds to the Laurent expansion that is an ordinary series in the time variable and a
Laurent series in the space variables. For QRW, the point 0 is always on the boundary of B0.
In general, all components of the complement of any amoeba are convex. For further details
and properties of amoebas, see [10, Chap. 6].

For any r ∈ R
d+1, let r̂ denote the unit vector r/|r|. Two important hypotheses that will

be satisfied for QRW are as follows.

The function r · x is maximized over B0 at a specified point x∗; (2.10)

we will be primarily concerned with those r̂ for which this maximizing point is the origin,
and we denote by K the set of r̂ for which this holds: thus for r̂ ∈ K and x ∈ B0, r · x ≤ 0
with equality when x = 0. Secondly, we assume that the set W = W(r) of z = exp(x + iy)

such that

H(z) = 0 and ∇logH(z) ‖ r̂ (2.11)

is finite. The set W(r) depends on r only through r̂. The gradient of H ◦ exp at the point
z ∈ W is equal to (z1∂H/∂z1, . . . , zd+1∂H/∂zd+1) and will be denoted ∇logH(z). It is im-
mediate from (2.11) that ∇logH(z) is a multiple of the real vector r for all 1 ≤ j ≤ k.
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Before we proceed we point out a condition under which (2.11) is always satisfied. Sup-
pose that V1 is smooth off a finite set E, and we let r be some direction such that hypoth-
esis (2.11) fails. The set W(r) is algebraic, so if it is infinite it contains a curve, which is
a curve of constancy for the logarithmic Gauss map. This implies that the Jacobian of the
logarithmic Gauss map vanishes on the curve, which is equivalent to vanishing Gaussian
curvature at every point of the curve. Thus, if we restrict r to the subset of V1 where K �= 0,
then hypothesis (2.11) is automatically satisfied.

The coefficients ar of the Laurent series corresponding to B0 may be computed via
Cauchy’s integral formula. Define the flat torus T0 := (R/(2πZ))d+1. The following propo-
sition is well known.

Proposition 2.6 (Cauchy’s Integral Formula) For any u interior to B0,

ar =
(

1

2π

)d+1

exp(−r · u)

∫

T0

exp(−ir · y)F ◦ exp(u + iy) dy. (2.12)

Corollary 2.7 Let λ := λ(r̂) := sup{r̂ · x : x ∈ B0}. For any λ′ < λ, the estimate

|ar′ | = o(exp(−λ′|r′|))
holds uniformly as r′ → ∞ in some cone with r in its interior.

Proof Pick u interior to B0 such that r · u > λ′. There is some ε > 0 and some cone K with
r in its interior such that r′ ·u ≥ λ′ + ε for all r′ ∈ K. The function F is bounded on the torus
exp(u + iy), and the corollary follows from Cauchy’s formula. �

NOTE: We allow for the possibility that hypothesis (2.11) holds for no points with modu-
lus 1. In the asymptotic estimate (3.6) below, the sum will be empty and we will be able to
conclude that ar = O(|r|−(d+1)/2), as opposed to �(|r|−d/2) in the more interesting regime;
we will not be able to conclude that ar decays exponentially, as it does when r /∈ K. This
will correspond to the case where in fact r ∈ K \ K. Observe also that the finiteness hypoth-
esis (2.10) is not required for this result.

2.4 Oscillating Integrals

Let M be an oriented d-manifold, let φ : M → R be a smooth function and let A be a
smooth d-form on M. Say that p∗ ∈ M is a critical point for φ if dφ(p∗) = 0. Equivalently,
in coordinates, p∗ is critical if the gradient vector ∇φ(p∗) vanishes. At a critical point,
φ(p) − φ(p∗) is a smooth function of p which vanishes to order at least 2 at p = p∗.
Say that a critical point p∗ for φ is quadratically nondegenerate if the quadratic part is
nondegenerate; in coordinates, this means that the Hessian matrix

H(φ;p∗) :=
(

∂2φ

∂xi∂xj

(p∗)
)

1≤i,j≤k

has nonzero determinant. It is well known (e.g., [5, 19] that the integral
∫

M exp(iλφ(y)) ×
A(y) dy can be asymptotically estimated via a stationary phase analysis. The following for-
mulation is adapted from [17].

If p �→ (x1, . . . , xd) is a local right-handed coordinatization, we denote by η[p,dx] the
value A(p) for the function A such that η = A(p)dx. If the real matrix M has nonvanishing
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real eigenvalues, we denote a signature function σ(M) := n+(M) − n−(M) where n+(M)

(respectively n−(M)) denotes the number of positive (respectively negative) eigenvalues of
M . Given φ and η as above, and a critical point p∗ for φ, we claim that the quantity F
defined by

F (φ, η,p∗) := e−iπσ/4 |det H(φ;p∗)|−1/2 η[p∗, dx] (2.13)

does not depend on the choice of coordinatization. To see this, note that the symmetric
matrix H has nonzero real eigenvalues, whence iH has purely imaginary eigenvalues and
the quantity e−iπσ/4|det H(φ;p∗)|−1/2 is a −1/2 power of det(iH), in particular, the product
of the reciprocals of the principal square roots of the eigenvalues. Up to the sign choice, this
is invariant because a change of coordinates with Jacobian J at p∗ divides η[p∗, dx] by
J and H(φ;p∗) by J 2. Invariance of the sign choice follows from connectedness of the
special orthogonal group, implying that any two right-handed coordinatizations are locally
homotopic and the sign choice, being continuous, must be constant.

Lemma 2.8 (Nondegenerate stationary phase integrals) Let φ be a smooth function on a
d-manifold M and let η be a smooth, compactly supported d-form on M. Assume the
following hypotheses.

(i) The set W of critical points of φ on the support of η is finite and non-empty.
(ii) φ is quadratically nondegenerate at each p∗ ∈ W.

Then

∫

M
exp(iλφ)η =

(
2π

λ

)d/2 ∑

p∗∈W

eiλφ(p∗)F (φ, η,p∗) + O
(
λ−(d+1)/2

)
. (2.14)

Remarks 1 The stationary phase method actually gives an infinite asymptotic development
for this integral. In our application, the contributions of order λ−d/2 will not cancel, in which
case (2.14) gives an asymptotic formula for the integral. The remainder term (see [17]) is
bounded by a polynomial in the reciprocals of |∇φ| and det H and partial derivatives of φ

(to order two) and η (to order one); it follows that the bound is uniform if φ and η vary
smoothly with (i) and (ii) always holding.

Proof Let {Nα} be a finite cover of M by open sets containing at most one critical point
of φ, with each Nα covered by a single chart map and no two containing the same critical
point. Let {ψα} be a partition of unity subordinate to {Nα}. Write

I :=
∫

M
exp(iλφ)η

as
∑

α Iα where

Iα :=
∫

Nα

exp(iλφ)ηψα.

According to [17, Proposition 4 of VIII.2.1], when Nα contains no critical point of φ then
Iα is rapidly decreasing, i.e., Iα(λ) = o(λ−N) for every N . According to [17, Proposi-
tion 6 of VIII.2.3], when Nα contains a single nondegenerate critical point p∗ for φ then,
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using the fact that ψα(p∗) = 1,

Iα =
(

2π

λ

)d/2

A(p∗)
d∏

j=1

μ
−1/2
j + O

(
λ−d/2−1

)

where η = A(x)dx in the local chart map, {μj } are the eigenvalues of iH in this chart map,
and the principal −1/2 powers are chosen. Summing over α then proves the lemma. �

As a corollary, we derive the asymptotics for the Fourier transform of a smooth d-form
on an oriented d-manifold immersed in R

d+1. Let M be such a manifold and let K(p)

denote the curvature of M at p. If η is a smooth, compactly supported d-form on M,
denote η[p] = η[p,dx] with respect to the immersion coordinates, and define the Fourier
transform η̂ by

η̂(r) :=
∫

M
eir̂·x · η.

Corollary 2.9 Let K be a compact subset of the unit sphere. Assume that for r̂ ∈ K , the
set W of critical points for the phase function r̂ · x is finite (possibly empty), and all critical
points are quadratically nondegenerate. For x ∈ W, let τ(x) denote the index of the critical
point, that is, the difference between the dimensions of the positive and negative tangent
subspaces for the function r̂ · x. Then

η̂(r) =
(

2π

|r|
)d/2 ∑

x∗∈W

eir·x∗η[x∗]K(x∗)−1/2e−iπτ(x∗)/4 + O
(
λ−(d+1)/2

)

uniformly as |r| → ∞ with r̂ ∈ K .

Proof Plugging φ = r̂ · x into Lemma 2.8, and comparing with (2.13) we see that we need
only to verify for each x∗ ∈ W that

e−iπσ/4 |det H(φ;x∗)|−1/2 η[x∗, dx] = η[x∗] |K(x∗)|−1/2 e−iπτ(x∗)/4.

With the immersed coordinates, σ = τ , and this amounts to verifying that |det H(φ;x∗)| =
|K(x∗)|. Let P denote the tangent space to M at x∗ and let u1, . . . , ud be an orthonormal
basis for P . Let v be the unit vector in direction r̂, which is orthogonal to P because x∗ is
critical for φ. In this coordinate system, express M as a graph over P . Thus locally,

M = {x∗ + u + h(u)v : u ∈ P}

for some smooth function h with h(0) and ∇h(0) vanishing. Let Q denote the quadratic part
of h. By Corollary 2.4, we have K(x∗) = ‖Q‖. But

φ(x∗ + u + h(u)v) = φ(x∗) + h(u)

whence H(φ;x∗) = Q, completing the verification. �
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3 Results on Multivariate Generating Functions

In this section, we state general results on asymptotics of coefficients of rational multivariate
generating functions. These results extend previous work of [13] in two ways: the hypothe-
ses are generalized to remove a finiteness condition, and the conclusions are restated in
terms of Gaussian curvature. Our two theorems concern reductions of the (d + 1)-variable
Cauchy integral to something more manageable; the second theorem is an extension of the
first.

We give some notation and hypotheses that are assumed throughout this section. Let
F = G/H be the quotient of Laurent polynomials in d + 1 variables z := (z1, . . . , zd+1) and
let B0 be a component of the complement of the amoeba of H containing a translate of the
negative zd+1-axis (see Sect. 2.3). Assume 0 ∈ ∂B0 and let F =∑

r arzr be the Laurent se-
ries corresponding to B0. Let V denote the set {z ∈ C

d+1 : H(z) = 0} and V1 := V ∩T denote
the intersection of V with the unit torus. Let E := V1 ∩ {z : ∇H(z) = 0} denote the singular
set of V1. Let K := K(0) denote the cone of r̂ for which the maximality condition (2.10) is
satisfied with x∗ = 0 and let N be any compact subcone of the interior of K such that (2.11)
holds for r̂ ∈ N (finitely many critical points).

3.1 When V Is Smooth on the Unit Torus

We start with the definition/construction of the residue form in the case of a generic rational
function F = P/Q with singular variety VQ.

Proposition 3.1 (Residue form) There is a unique d-form η, holomorphic everywhere ∇Q

does not vanish such that η∧dQ = P dz. We call it the residue form for F on VQ and denote
it by RES (F dz).

Remark 1 To avoid ambiguous notation, we denote the usual residue at a simple pole a of a
univariate function f by

residue(f ;a) = lim
z→a

(z − a)f (z).

Proof To prove uniqueness, let η1 and η2 be two solutions. Then (η1 − η2) ∧ dQ = 0. The
inclusion ι : VQ → C

d induces a map ι∗ that annihilates any form ξ with ξ ∧ dQ = 0. Hence
η1 = η2 when they are viewed as forms on VQ.

To prove existence, suppose that (∂Q/∂zd+1)(z) �= 0. Then the form

η := P

∂Q/∂zd+1
dz1 · · ·dzd (3.1)

is evidently a solution. One has a similar solution assuming ∂Q/∂zj is nonvanishing for
any other j . The form is therefore well defined and nonsingular everywhere that ∇Q is
nonzero. �

From the previous proposition, RES (F dz) is holomorphic wherever ∇H �= 0, and in
particular, on V1 \ E.

Lemma 3.2 Let F,G,H, V,B0, V1 and E be as stated in the beginning of this section.
Assume torality (2.3) and suppose that the singular set E is empty. Then ar may be computed
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via the following holomorphic integral.

ar =
(

1

2πi

)d ∫

V1

z−r−1RES (F dz). (3.2)

Proof As a preliminary step, we observe that the projection π : V → C
d onto the first d

coordinates induces a fibration of V1 with discrete fiber of cardinality 2d , everywhere except
on a set of positive codimension. To see this, first observe (cf. (2.2)) that the polynomial
H has degree 2d in the variable zd+1. Let Y ⊆ V be the subvariety on which ∂H/∂zd+1

vanishes. Then on the regular set U := T \ π(Y ), the inverse image of π contains 2d points
and there are distinct, locally defined smooth maps y1(x), . . . , y2d(x) that are inverted by π .
The fibration

π−1[U ] π−→ U

is the aforementioned fibration with fiber cardinality 2d .
Next, we apply Cauchy’s integral formula with u = −ed+1. Let S1 and S2 denote the

circles in C
1 of respective radii e−1 and 1 + s, and let Tj := Td × Sj for j = 1,2. By (2.3),

neither T1 nor T2 intersects V , so beginning with the integral formula and integrating around
T1, we have

ar =
(

1

2πi

)d+1 ∫

T1

z−r−1F(z) dz

=
(

1

2πi

)d+1 [∫

T1

z−r−1F(z)dz −
∫

T2

z−r−1F(z)dz
]

+
(

1

2πi

)d+1 ∫

T2

z−r−1F(z)dz.

Expressing the integral over Tj as an iterated integral over Td × Sj shows that the quantity
in square brackets is

∫

Td

[∫

S1

z−r−1F(z) dzd+1 −
∫

S2

z−r−1F(z) dzd+1

]
dz† (3.3)

where z† denotes (z1, . . . , zd). The inner integral is the integral in zd+1 of a bounded contin-
uous function of (z†, zd+1), so it is a bounded function of z†. We may always write the inner
integral as a sum of residues. In fact, when z† ∈ U it is the sum of 2d simple residues, and
since Td \ U has measure zero, we may rewrite (3.3) as

2πi

∫

U

[
2d∑

k=1

z−r−1residue(F (z†, ·);yk(z†))

]

dz†. (3.4)

On U , we have seen from (3.1) that

RES (F dz)(z) = π∗ [residue (F (z†, ·); zd+1) dz†

]
(π(z)),

hence, from the fibration, (3.4) becomes

2πi

∫

π−1[U ]
z−r−1RES (F dz).
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Because the complement of π−1[U ] in V1 has measure zero, we have shown that

ar =
(

1

2πi

)d ∫

V1\E
z−r−1RES (F dz) +

(
1

2πi

)d+1 ∫

T2

z−r−1F(z)dz. (3.5)

The integral over T2 is O((1 + s)−rd ); because s is arbitrary, sending s → ∞ shows this
integral to be zero. We have assumed that E is empty, so (3.5) becomes the desired conclu-
sion (3.2). �

The next theorem has the quantum random walk as its main target, however it is valid for
a general class of rational Laurent series, provided we assume the hypotheses of Lemma 3.2,
namely torality (2.3) and smoothness (E = ∅). Under these hypotheses, the image of V1

under z �→ (log z)/i is a smooth co-dimension-one submanifold M of the flat torus; we let
K(z) denote the curvature of M at the point (log z)/i. Of primary interest is the regime of
sub-exponential decay, which is governed by critical points on the unit torus. We therefore
let K denote the set of directions r̂ for which r̂ · x is maximized at x = 0 on the closure B0

of the component of the amoeba complement in which we are computing a Laurent series.
We also assume (2.11) (finiteness of W(r̂)) for each r̂ ∈ K. Observing that z = exp(ix) ∈ W
if and only if x is critical for the function r · x on M, we may define τ(z) to be the signature
of the critical point (log z)/i (the dimension of positive space minus dimension of negative
space) for the function r̂ · x on M.

Theorem 3.3 Under the above hypotheses, let N be a compact subset of the interior of K
such that the curvatures K(z) at all points z ∈ W(r̂) are nonvanishing for all r̂ ∈ N . Then
as |r| → ∞, uniformly over r̂ ∈ N ,

ar =
(

1

2π |r|
)d/2∑

z∈W

z−r G(z)
|∇logH(z)|

1√|K(z)|e
−iπτ(z)/4 + O

(|r|−(d+1)/2
)

(3.6)

provided that ∇logH is a positive multiple of r̂ (if it is a negative multiple, the estimate must
be multiplied by −1). When r̂ /∈ K then ar = o(exp(−c|r|)) for some positive constant c,
which is uniform if r̂ ranges over a compact subcone of the complement of K.

Proof The conclusion in the case where r /∈ K follows from Corollary 2.7. In the other case,
assume r ∈ N and apply Lemma 3.2 to express ar in the form (3.2):

ar =
(

1

2πi

)d ∫

V1

z−rRES

(
F

dz
z

)
.

The chain of integration is a smooth d-dimensional submanifold of the unit torus in R
d+1,

so when we apply the change of variables z = exp(iy), the chain of integration becomes a
smooth submanifold M of the flat torus T0, hence locally an immersed d-manifold in R

d+1.
We have dz = izdy, so F(z)dz/z = id F ◦ exp(y) dy and functoriality of RES implies that

RES

(
F

dz
z

)
= RES (F ◦ exp dy).

After the change of coordinates, therefore, the integral becomes

ar = (2π)−d η̂(r) =
(

1

2π

)d ∫

M
e−ir·y η
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where η := RES (F ◦ exp dy). By hypothesis, η is smooth and compactly supported, so if
we apply Corollary 2.9 and divide by (2π)d we obtain

ar =
(

1

2π |r|
)d/2∑

z∈W

z−rη[z] |K(z)|−1/2 e−iπτ(z)/4 + O
(|r|−(d+1)/2

)
.

Finally, we evaluate η[z] in a coordinate system in which the (d + 1)st coordinate is r̂. We
see from (3.1) that

η = G(z)
∂H/∂ r̂(z)

dA

where d r̂ ∧ dA = dz. Because the gradient of H is in the direction r̂, this boils down to
η = G(z)/|∇logH(z)| at the point z, finishing the proof. �

3.2 V Contains Noncontributing Cone Points

In this section, we generalize Theorem 3.3 to allow ∇H to vanish at finitely many points
of V . The key is to ensure that the contribution to the Cauchy integral near these points
does not affect the asymptotics. This will be a consequence of an assumption about the
degrees of vanishing of G and H at points of E. We begin with some estimates in the vein
of classical harmonic analysis. Suppose η is a smooth p-form on a smooth cone in R

d+1;
the term “smooth” for cones means smooth except at the origin. We say η is homogeneous
of degree k if in local coordinates it is a finite sum of forms A(z) dzi1 ∧ · · · ∧ dzip with A

homogeneous of degree k − p, that is, A(λz) = λk−pA(z). A smooth p-form η on a smooth
cone is said to have leading degree α if

η = η◦ +
∑

i1,...,ip

O(|z|α−p+1 dzi1 ∧ dzip ) (3.7)

with η◦ homogeneous of degree α. The following lemma is a special case of the big-
O lemma from [4]. That lemma requires a rather complicated topological construction
from [3]; we give a self-contained proof, due to Phil Gressman, for the special case required
here.

Lemma 3.4 Let V0 be a smooth (d − 1)-dimensional manifold in Sd and let V denote the
cone over V0 in R

d+1. Let η be a compactly supported d-form of leading degree α > 0 on V .
Then

∫

V
eir·zη = O(|r|−α).

Proof Assume without loss of generality that η is supported on the unit polydisk {z :
|z| ≤ 1}, where |z| :=

√∑d+1
j=1 |zj |2 is the usual Euclidean norm on C

d+1. The union of
the interiors of the annuli

Bn := {z : 2−n−2 ≤ |z| ≤ 2−n}
is the open unit polydisk, minus the origin. Let θn : B0 → Bn denote dilation by 2−n and let
ηn := θ∗

n η|B0 be the pullback to B0 from Bn of the form η. Let η◦ denote the homogeneous
part of η, that is, the unique form satisfying (3.7). The forms ηn are asymptotically equal



Two-dimensional Quantum Random Walk 95

to 2−αnη◦ in the following sense: for each L, the partial derivatives of 2αnηn up to order L

converge to the corresponding partial derivatives of η◦, uniformly on B0. Let χn be smooth
functions, compactly supported on the interior of B0, and with partial derivatives up to any
fixed order bounded uniformly in n. Then for any N > 0 there is an estimate

∫

B0

eir·zχn(z) · (2αnηn(z)) = O
(|r|−N

)
(3.8)

uniformly in n. This is a standard result, an argument for which may be found in [17, Propo-
sition 4 of Section VIII.2], noting that uniform bounds on the partial derivatives of coeffi-
cients of χnηn up to a sufficiently high order L suffice to prove Stein’s Proposition 4 for the
class ηn, uniformly in n. To make the O-notation explicit, we rewrite (3.8) as

∫

B0

eir·zχn(z)ηn(z) ≤ gN(|r|)2−αn |r|−N (3.9)

for some functions gN(x) each going to zero as x → ∞.
Next, let {ψn : n ≥ 0} be a partition of unity subordinate to the cover {Bn}. We may

choose ψn so that 0 ≤ ψn ≤ 1 and so that the partial derivatives of ψn up to a fixed order
L are bounded by CL2n where CL does not depend on n. We estimate

∫
Bn

eir·zψnη in two
ways. First, using |ψn| ≤ 1 and η(z) = O(|z|α−d dzi1 · · ·dzid ), we obtain

∣∣
∣∣

∫

Bn

eir·zψnη

∣∣
∣∣≤ C 2−nd sup

z∈Bn

|z|α−d ≤ C ′ 2−nα (3.10)

for some constants C,C ′ independent of n. On the other hand, pulling back by θn, we ob-
serve that the partial derivatives of θ∗

nψn up to order L are bounded by CL independently
of n. Using (3.9), for any N > 0 we choose L = L(N) appropriately to obtain

∣∣
∣∣

∫

Bn

eir·zψnη

∣∣
∣∣ =

∣∣
∣∣

∫

B0

ei(r/2n)·z(θ∗
nψn) · (2αnηn)

∣∣
∣∣

≤ gN

( |r|
2n

)
2−αn

( |r|
2n

)−N

for all n,N , where gN are real functions going to zero at infinity.
Let n0(r) be the least integer such that 2−n0 ≤ 1/|r|. Our last estimate implies that for

n = n0 − j < n0,

∣∣
∣∣

∫

Bn

eir·zψnη

∣∣
∣∣ ≤ 2−αn gN

( |r|
2n

)( |r|
2n

)−N

= 2−αn0

[

2αj gN

(
2j |r|

2n0

)(
2j |r|

2n0

)−N
]

.

Once N > α, the quantity in the square brackets is summable over j ≥ 1, giving

∑

n<n0

∣
∣∣
∣

∫

Bn

eir·zψnη

∣
∣∣
∣= O

(
2−αn0

)
.
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On the other hand, (3.10) is summable over n ≥ n0, so we have

∑

n≥n0

∣∣
∣∣

∫

Bn

eir·zψnη

∣∣
∣∣= O

(
2−αn0

)
.

The last two estimates, along with |r| = �(2n0), prove the lemma. �

Given an algebraic variety V := {H = 0}, let p be an isolated singular point of V . Let
H ◦ = H ◦

p denote the leading homogeneous term of H at p, namely the homogeneous poly-
nomial of some degree m such that H(p + z) = H ◦(z) + O(|z|m+1); the degree m will be
the least degree of any term in the Taylor expansion of H near p. The normal cone to V at p

is defined to be the set of all normals to the homogeneous variety Vp := {z : H ◦
p(p + z) = 0}.

We remark that r is in the normal cone to V at p if and only if r · z has (a line of) critical
points on Vp .

Theorem 3.5 Let F,G,H, V,B0, V1 and E be as stated at the beginning of this section.
Assume torality (2.3). Suppose that the singular set E is finite and that for each p ∈ E, the
following hypotheses are satisfied.

(i) The residue form η has leading degree α > d/2 at p.
(ii) The cone Vp is projectively smooth and r is not in the normal cone to V at p.

Then a conclusion similar to that of Theorem 3.3 holds, namely the sum (3.6) over the points
zj /∈ E where ∇H ‖ r gives the asymptotics of ar up to a correction that is o(|r|−d/2).

Proof By [18, Corollary 2′′], condition (ii) implies that the function H(p + z) is bi-
analytically conjugate to the function H ◦

p , that is, locally there is a bi-analytic change of
coordinates �p such that H ◦

p ◦ �p = H(p + z). Now for each p ∈ E, let Up be a neighbor-

hood of p in Ṽ sufficiently small so that it contains no other p′ ∈ E, contains no yj , and so
that the bi-analytic map �p is defined on Up . Let U0 be a neighborhood of the complement
of the union of the sets Up . Using a partition of unity subordinate to {Up,U0}, we replicate
the beginning of the proof of Theorem 3.3 to see that it suffices to show

∫

Up

eir·yRES (F dx) = o(|r|−d/2).

Changing coordinates via �p gives an integral of a smooth, compactly supported form η on
the cone Vp which is homogeneous of order α > d/2. Lemma 3.4 estimates the integral to
be O(|r|−α), which completes the proof. �

4 Application to 2-D Quantum Random Walks

As before, we let F = (F (i,j))1≤i,j≤k where

F (i,j)(x, y, z) =
∑

r,s,t

a(i,j)
r,s,nx

ryszt

and a
(i,j)
r,s,n is the amplitude for finding the particle at location (r, s) at time n in chirality j

if is started at the origin at time zero in cardinality i. Each entry F (i,j) has some numerator
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G(i,j) and the same denominator H = det(I − zMU). In addition, we will denote the image
of the gauss map of V1 \ E as G . We note that r̂ ∈ G precisely when

There is some z in the unit torus for which H(z) = 0 and ∇logH(z) ‖ r̂. (4.1)

In fact, we can make a stronger statement as follows.

Lemma 4.1 G ⊂ K.

Proof Let z satisfy (4.1) for some r̂. Because V is smooth at z, a neighborhood of z (or a
patch including z) in V is mapped by the coordinatewise Log map to a support patch to
B0 which is normal to r̂. This patch lies entirely outside B0 by the convexity of amoeba
complements. In the limit we see the following. If we take the real version of the complex
tangent plane to V ∈ C

d+1 at z and map by the coordinatewise log map, the result is a support
hyperplane to B0 which again, lies completely outside B0 (except at Log |z|) by convexity.
Now when r̂ ∈ G , (4.1) is satisfied with z ∈ V1. Thus Log |z| = 0 and r̂ ∈ K. The desired
conclusion follows. �

We will apply the results of Sect. 3 to several one-parameter families of two-dimensional
QRW’s. Each analysis requires us to verify properties of the corresponding family of gener-
ating functions.

4.1 The Family S(p)

We begin by introducing a family S(p) of orthogonal matrices with p ∈ (0,1):

S(p) =

⎛

⎜
⎜⎜
⎜⎜⎜
⎝

√
p√
2

√
p√
2

√
1−p√

2

√
1−p√

2

−
√

p√
2

√
p√
2

−
√

1−p√
2

√
1−p√

2√
1−p√

2
−

√
1−p√

2
−

√
p√
2

√
p√
2

−
√

1−p√
2

−
√

1−p√
2

√
p√
2

√
p√
2

⎞

⎟
⎟⎟
⎟⎟⎟
⎠

.

The matrix S(1/2) is the alternative Hadamard matrix referred to earlier as ŨHad. A proba-
bility profile was shown in Fig. 2; here is Fig. 5 for another parameter value, namely 1/8.
The following theorem, conjectured in [6], shows why similarity of the pictures is not a
coincidence.

Theorem 4.2 For the quantum random walk with unitary matrix U = S(p), let G′ be a
compact subset of the interior of G such that the curvatures K(z) at all points z ∈ W(r̂) are
nonvanishing for all r̂ ∈ G′. Fix chiralities i, j , let G := G(i,j), and let ar := ar,s,n denote the
amplitude to be at position (r, s) at time n. Then as |r| → ∞, uniformly over r̂ ∈ G′,

ar = (−1)δ 1

2π |r|
∑

z∈W

z−r G(z)
|∇logH(z)|

1√|K(z)|e
−iπτ(z)/4 + O

(|r|−3/2
)

(4.2)

where δ = 1 if ∇logH is a negative multiple of r̂ (so as to change the sign of the estimate)
and zero otherwise. When r̂ ∈ [−1,1]2 \ G then for every integer N > 0 there is a C > 0
such that Pr (r) ≤ C|r|−N with C uniform as r ranges over a neighborhood N of r whose
closure is disjoint from the closure of G .
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Fig. 5 The S(1/8) walk

Before proving this theorem we interpret its implication for the probability profile. The
probability of finding the particle at (r, s) in the given chiralities at the given time is equal
to |ar|2. We only care about ar up to a unit complex multiple, so we don’t care whether
δ is zero or one, but we must keep track of phase factors inside the sum because these
affect the interference of terms from different r ∈ W. In fact, the nearest neighbor QRW has
periodicity (because all possible steps are odd); the manifestation of this is that W consists of
conjugate pairs. When r + s and n have opposite parities the summands in the formula for ar

cancel. Otherwise the probability amplitude |ar|2 will be �(n−2), uniformly over compact
regions avoiding critical values in the range of the logarithmic Gauss map but blowing up at
these values.

Proof of Theorem 4.2 As G ⊂ K by Lemma 4.1, the result when r̂ ∈ G′ is immediate once
we have shown that for any S(p), its generating function satisfies the hypotheses of Theo-
rem 3.3. We establish this in the lemma below.

Lemma 4.3 Let H := H(p) = det (I − zM(x, y)S(p)). Then for 0 < p < 1, ∇H �= 0 on T3.
Consequently, V1 := VH ∩ T3 is smooth.

Theorem 3.3 will not be helpful in proving the case when r̂ ∈ [−1,1]2 \ G . To prove
this condition we present the following lemma, which is a generalization of [17, Proposi-
tion 4 of Sect. VIII.2].

Lemma 4.4 Let M be a compact d-manifold. Suppose α is smooth and that f is a smooth
real-valued function with no critical points in M. Then

I (λ) =
∫

M
eiλf (x)α(x)dx = O(λ−N) (4.3)

as λ → ∞, for every N ≥ 0.

We will see below that V1 is compact as it is a four-cover of the two-torus. In the calcula-
tion of ar, we have f (y) = −r̂ · y and λ = |r|. Thus a direction r̂ is not in G precisely when
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f (y) has no critical points in V1. Uniform exponential decay of amplitudes for r bounded
outside the image of the gauss map follows. �

We now prove the above lemmas in reverse order.

Proof of Lemma 4.4 As M is compact it admits a finite open cover {Ui}i∈I with subordinate
partition of unity {φi}i∈I . We decompose the integral

I (λ) =
∫

M
eiλf (x)α(x)dx =

∫

M
eiλf (x)α(x)

∑

i∈I

φi(x)dx

=
∑

i∈I

∫

M
eiλf (x)α(x)φi(x)dx =

∑

i∈I

∫

Ui

eiλf (x)α(x)φi(x)dx.

We will show that for each i ∈ I ,
∫

Ui
eiλf (x)α(x)φi(x)dx is rapidly decreasing (the require-

ment above for I (λ)). As the cover Ui is finite, this will give us our result.
For a given i ∈ I , we let ψ(x) := α(x)φi(x) which is then smooth with compact support.

For each x0 in the support of ψ(x), there is a unit vector ξ and a small ball B(x0), centered
at x0, such that ξ · (∇f )(x) ≥ c > 0 for some real c uniformly for all x ∈ B(x0). We then
decompose the integral

∫
Ui

eiλf (x)ψ(x)dx as a finite sum

∑

k

∫
eiλf (x)ψk(x)dx

where each ψk is smooth and has compact support in one of these balls. It then suffices
to prove the corresponding estimate for each summand. Now choose a coordinate system
x1, . . . , xd so that x1 lies along ξ . Then

∫
eiλf (x)ψk(x)dx =

∫ (∫
eiλf (x1,...,xd )ψk(x1, . . . , xd)dx1

)
dx2 . . . dxd .

Now by [17, Proposition 1 of Sect. VIII.2] the inner integral is rapidly decreasing, giving us
our desired conclusion. �

For the next two proofs, we clear denominators to obtain the following explicit polyno-
mial: H = (x2y2 + y2 − x2 − 1 + 2xyz2)z2 − 2xy − √

2pz(xy2 − y − x + z2y − z2x +
z2xy2 + z2x2y − x2y). We make the substitution α = √

2p to facilitate the use of Gröbner
Bases, which require polynomials as inputs. Use the notation Hx for ∂H

∂x
, and similarly with

y and z.

Proof of Lemma 4.3 Using the Maple command Basis([H,Hx,Hy,Hz],plex(x,y,z, α)

we get a Gröbner Basis with first term zα2(α2 − 1)(α2 − 2) = 2zp(2p − 1)(2p − 2). Thus
to show that S(p) results in a variety whose intersection with T is smooth for p ∈ (0,1),
we need only consider the case when p = 1/2. In this case α = 1 and the Gröbner Basis for
the ideal where (H,∇H) = 0 is (−z + z5, z3 + 2y − z,−z − z3 + 2x). Here B1 vanishes on
the unit circle for z = ±1,±i. However, for z = ±1, B2 vanishes only when y = 0 and for
z = ±i, B3 vanishes only when x = 0. Thus ∇H does not vanish on T3. �
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4.1.1 Further Analysis of the Limit Shape for S(p)

Proposition 4.5 For each pair (x, y), there are four distinct values z1, z2, z3, z4 such that
(x, y, zi) ∈ V1 for i ∈ 1,2,3,4. Consequently, the projection (x, y, z) �→ (x, y) is a smooth
four-covering of T2 by V1.

Proof: Since H has degree four in z, it has at most four z values for each pair (x, y).
Thus for each (x, y) there are at most four z values on V1. Recall from Proposition 2.1
that all solutions to H(x,y, z) = 0 for a given (x, y) in the unit torus have |z| = 1 as well.
Hence, if ever there are fewer than four z values for a given (x, y), then there are fewer than
four solutions to H(x,y, ·) = 0 and the implicit function theorem must fail. Consequently,
∂H
∂z

= 0. This cannot be true, however, by the following argument. We have ruled out Hx =
Hy = Hz = 0 on V1, so if Hz = 0, then the point (x, y, z) contributes toward asymptotics in
the direction (r, s,0) for some (r, s) �= (0,0). The particle moves at most one step per unit
time, so this is impossible. �

To facilitate discussions of subsets of the unit torus, we let (α,β, γ ) denote the respective
arguments of (x, y, z), that is, x = eiα, y = eiβ, z = eiγ . We may think of α,β and γ as
belonging to the flat torus (R/2πZ)3.

Proposition 4.6 V1 can be decomposed into connected components as V1 = A�B �C�D,
where A,B,C and D will be the components containing the γ values 0,π/2,π and 3π/2,
respectively.

Proof Let χ := {(x, y, z) : z4 = −1}. We begin by establishing that |V1 ∩ χ | = 8 with two
points for each of the fourth roots of −1. Furthemore, −π/4 ≤ γ ≤ π/4 on A, π/4 ≤ γ ≤
3π/4 on B , 3π/4 ≤ γ ≤ 5π/4 on C, and 5π/4 ≤ γ ≤ 7π/4 on D. These observations
suffice to prove the proposition, because the smooth variety V1 cannot have its intersection
with a stratum {(α,β, γ ) : γ = c} that is pinched down to a point; the only possibility is
therefore that these values of γ are extreme values on components of V1.

To check the first of these statements, use the identities cosγ = (z + z−1)/2, sinγ =
(z − z−1)/(2i), as well as the analogous identities for α and β , to write the equation of V in
terms of α,β and γ . We find that H(x,y, z) = 0 if and only if

0 = L(α,β, γ ) := 2 sinγ cosγ −√2p(sinβ cosγ + cosα sinγ ) + cosα sinβ. (4.4)

Substituting γ = π/4 results in

1 − (sinβ + cosα)
√

p + cosα sinβ = 0.

Verifying that sinβ = √
p is not a solution, and dividing by sinβ − √

p, we find that

cosα = 1 − √
p sinβ

sinβ − √
p

.

The right-hand side is in [−1,1] only when sinβ = ±1. Thus when γ = π/4, the pair (α,β)

is either (π,π/2) or (0,3π/2).
To check the remaining statements, we introduce the following set of isometries for V1.

Define

φA(α,β, γ ) := (−α,−β,−γ )
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φB(α,β, γ ) :=
(
β + π

2
, α + π

2
, γ + π

2

)

φC(α,β, γ ) := (α + π,β + π,γ + π)

φD(α,β, γ ) :=
(

β + 3π

2
, α + 3π

2
, γ + 3π

2

)
.

Verifying that φA, φB and φC (and hence φD which is equal to φC ◦ φB ) are isometries is a
simple exercise in trigonometry using (4.4), which we will omit. Each isometry inherits its
name from the region it proves isometric with A. Using these isometries, we see that γ is
equal to 3π/4, 5π/4 and 7π/4 exactly twice on V1. �

We remark upon the existence of an additional eight-fold isometry within each connected
component: φ1(α,β, γ ) := (α,β + π,−γ ), φ2(α,β, γ ) := (−α,β, γ ) and φ3(α,β, γ ) :=
(α,π −β,γ ). These symmetries manifest themselves in the plots in Figs. 2 and 5 as follows.
The image is clearly the superposition of two pieces, one horizontally oriented and one
vertically oriented. Each of these two is the image of the Gauss map on two of the regions
A,B,C,D, and each of these four regions maps to the plot in a 2 to 1 manner on the
interior, folding over at the boundary. To verify this, we observe that if p0 contributes to
asymptotics in the direction (r, s) then φA(p0),φB(p0),φC(p0),φD(p0),φ1(p0),φ2(p0) and
φ3(p0) contribute to asymptotics in the directions (r, s)(s, r), (r, s), (s, r), (−r,−s), (−r, s)

and (r,−s), respectively. Thus while the image of the Gauss map is two overlapping leaves,
the Gauss map of A and C contribute to one leaf, while the Gauss map of B and D contribute
to the other. The four leaves are shown in Fig. 6.

We end the analysis with a few observations on the way in which the plots were gener-
ated. Our procedure was as follows. Solving for sinγ in (4.4), we obtained

sinγ = sinβ

√
2p cosγ − cosα

2 cosγ − √
2p cosα

. (4.5)

Squaring (4.4) and making the substitution sin2 γ = 1 − cos2 γ , we found that

(
1 − cos2 γ

)(
2 cosγ −√2p cosα

)2 − (1 − cos2 β
)(√

2p cosγ − cosα
)2

which we used to get the four solutions for γ in terms of α and β . We then let α and β

vary over a grid embedded in the 2-torus and solved for the four values of γ to obtain
four points in V1; this is the composition of the first two maps in (1.1). Differentiation of
H(eiα, eiβ, eiγ ) = 0 shows that the projective direction (r, s, t) corresponding to a point
(α,β, γ ) is given by r/t = −∂γ /∂α, s/t = −∂γ /∂β . Implicit differentiation of (4.4) then
gives four explicit values for (r/t, s/t) in terms of α and β . This is the composition of the
last two maps in (1.1), with the parametrization of RP

2 by (r/t, s/t) corresponding to the
choice of a planar rather than a spherical slice.

4.2 The Family A(p)

We now present a second family of orthogonal matrices A(p) below. In order for the matri-
ces to be real, we restrict p to the interval (0,1/

√
3).
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Fig. 6 The variety V1 for
p = 1/2

A(p) =

⎛

⎜⎜
⎜⎜
⎜
⎝

p p p
√

1 − 3p2

−p p −√1 − 3p2 p

p −√1 − 3p2 −p p

−√1 − 3p2 −p p p

⎞

⎟⎟
⎟⎟
⎟
⎠

.

This family intersects the family S(p) in one case, namely A(1/2) = S(1/2); for any
(p,p′) ∈ (0,1)2 other than (1/2,1/2), we have A(p) �= S(p′). The following theorem fol-
lows from Lemma 4.4 along with a new lemma, namely Lemma 4.8 below, analogous to
Lemma 4.3.

Theorem 4.7 If 0 < p < 1/
√

3 then Theorem 4.2 holds for the unitary matrix A(p) in place
of the matrix S(p). �

Lemma 4.8 Let H := H(p) = det (I − zM(x, y)A(p)). Then for 0 < p < 1/
√

3, ∇H �= 0
on T3. Consequently, V1 := VH ∩ T3 is smooth.

Proof We clear our denominator by setting H := (−xy) ∗ det(I − MA(p)z), now to get

H = 2(x − 1)(x + 1)(y2 + 1)z2p2

− (−y − x + xy2 + z2y − x2y + z2xy2 − z2x + z2x2y)zp + (yz2 − x)(xz2 + y).

As no
√

1 − p2 term appears, we can determine a Gröbner Basis without making a substitu-
tion. The Maple command Basis([H,Hx,Hy,Hz],plex(x,y,z,p) delivers a Basis with
first term p3z(2p + 1)(8p2 − 3)(2p2 − 1)(2p − 1). The roots of the first four factors fall
outside of our interval (0,1/

√
3) while the root of the last factor corresponds to the matrix

S(1/2) for which we know V1 is smooth from the discussion above. �
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Fig. 7 The profile for A(1/6)

shows how QRW approaches
degeneracy at the endpoints
p → 0,1

Fig. 8 p increases from 1/3 to 5/9, switching the direction of the tilt

Again we use Theorem 3.3 to correctly predict asymptotics for individual directions. We
show probability profiles for a number of parameter values in Figs. 7 and 8.

4.3 The Family B(p)

To demonstrate the application of Theorem 3.5 we introduce a third family of orthogonal
matrices, B(p), with p ∈ (0,1).

B(p) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

√
p√
2

√
p√
2

√
1−p√

2

√
1−p√

2

−
√

p√
2

√
p√
2

−
√

1−p√
2

√
1−p√

2

−
√

1−p√
2

√
1−p√

2

√
p√
2

−
√

p√
2

−
√

1−p√
2

−
√

1−p√
2

√
p√
2

√
p√
2

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.
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Fig. 9 The image of the Gauss map alongside the probability profile for the B(2/3) walk

We have already seen a walk generated by such a matrix, as Fig. 1 depicted the walk
generated by B(1/2). We note that B(p) is almost identical to S(p) with the one exception
being the multiplication of the third row by −1. As was the case with the S(p) walks we
can see in Fig. 9 strong similarities between the image of the gauss map and the probability
profile for various values of p.

In contrast to the cases of S(p) and A(p), we will not be able to apply Theorem 3.3
because V1 is not smooth.

Theorem 4.9 For the quantum random walk with unitary matrix U = B(p), let G′ be a
compact subset of the interior of G such that the curvatures K(z) at all points z ∈ W(r̂) are
nonvanishing for all r̂ ∈ G′. Then as |r| → ∞, uniformly over r̂ ∈ G′,

ar = ± 1

2π |r|
∑

z∈W

z−r G(z)
|∇logH(z)|

1√|K(z)|e
−iπτ(z)/4 + O

(|r|−3/2
)
. (4.6)

When r̂ ∈ [−1,1]2 \ G then for every integer N > 0 there is a C > 0 such that Pr (r) ≤
C|r|−N with C uniform as r ranges over a neighborhood N of r whose closure is disjoint
from the closure of G .

Proof First, we apply Lemma 4.4 with the lemma being applicable as we will see below
that V1 := VH ∩ T3 is a two-fold cover of T2 and thus compact. The conclusion when
r̂ ∈ [−1,1]2 \ G follows. We get the conclusion in the case where r̂ ∈ G′ by verifying the
hypotheses of Theorem 3.5 in the following lemmas. �

Lemma 4.10 Let H := H(p) = det (I − zM(x, y)B(p)). Then for 0 < p < 1, the set
E = {(x, y, z) : (H,∇H) = 0} consists only of the four points (x, y, z) = ±(1,1,

√
p/2 ±

i
√

1 − p/2).

Lemma 4.11 For any 0 < p < 1 we have the following conclusions for each p0 ∈ E for the
generating function associated to the unitary matrix U = B(p).

(i) The residue form η has leading degree α > d/2 at p0.
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(ii) The cone Vp0 is projectively smooth and r is not in the normal cone to V at p0.

Proof of Lemma 4.10 The proof of Lemma 4.10 is similar to the corresponding proofs in
the two previous examples, so we give only a sketch. Computing H from (2.2) and the
subsequent formula yields

H = 2xy(z4 + 1) − (x + y + xy2 + x2y)(z3 + z)
√

2p + (4pxy + x2 + x2y2 + 1 + y2)z2

= xyz2 · [4p + 2(z2 + z−2)

− ((x + x−1) + (y + y−1)
)
(z + z−1)

√
2p + (x + x−1)(y + y−1)

]
. (4.7)

Treating p as a parameter and computing a Gröbner basis of {H,Hx,Hy,Hz} with term
order plex(x, y, z) one obtains {x3 − x, y − x, z(x2 − 1), z2 − 2x

√
pz + 2x2}. Removing

the extraneous roots when one of x, y or z vanishes, what remains is ±(1,1, z) where z

solves z2 − 2
√

pz + 2 = 0. �

Proof of Lemma 4.11 Condition (i) follows from the fact that for each p0 ∈ E, the denom-
inator G(p)(x, y, z) vanishes as well as the numerator H(p) which only vanishes to order
1. To prove (ii), we compute the local geometry of {H = 0} near the four points found in
the previous lemma. We will do this for the points with positive (x, y) = (1,1); the case
(x, y) = (−1,−1) is similar. Substituting x = 1 + u,y = 1 + v, z = z0 + w into H and
then reducing modulo z2

0 − 2
√

pz0 + 2, we find that the leading homogeneous term in the
variables {u,v,w} is 4[√p(1 − p)(u2 + v2) − (2 − p)w2]. For 0 < p < 1, this is the cone
over a nondegenerate ellipse and therefore smooth. The dual cone is the set of (r, s, t) with
r2 + s2 = 2−p

(1−p)
√

p
t2. The minimum value of 2−p

(1−p)
√

p
on [0,1] is greater than 4, while the

vectors (r, s, t) inside the image of the Gauss map all have r2 + s2 < 4t2, whence r is never
in the normal cone to V at p0. �

Beginning with (4.7), we see that (x, y, z) ∈ V1 ⇐⇒

2 cos2 γ − (cosα + cosβ)
√

2p cosγ + cosα cosβ + p − 1 = 0. (4.8)

Thus for given α and β , the four values of γ are given explicitly by

γ = ± arccos

[
(cosα + cosβ)

√
2p ±

√
2p (cosα + cosβ)2 − 8 cosα cosβ − 8p + 8

4

]

.

(4.9)
We then differentiate (4.8) with respect to α and β to obtain the partial derivatives

∂γ

∂α
= sinα

sinγ
· cosα − cosγ

cosα + cosβ − 4 cosγ

and

∂γ

∂β
= sinβ

sinγ
· cosα − cosγ

cosα cosβ − 4 cosγ
.

Remark The fact that we can solve explicitly for Z with this family allows us to more clearly
depict the connection between curvature and asymptotics. Using Proposition 2.3 and (4.9),
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Fig. 10 A graph of curvature
versus direction for the B(1/2)

walk

Fig. 11 A graph of the areas of
lowest curvature and hence
highest probabilities for the
B(1/2) walk

we let Maple evaluate ∇ as well as

H =
⎡

⎣
∂2γ

∂α2
∂2γ

∂α∂β

∂2γ

∂β∂α

∂2γ

∂α2

⎤

⎦ .

In Fig. 10 we plot K against − ∂γ

∂α
and − ∂γ

∂β
as (α,β) varies over the two-dimensional torus.

In the above picture we see the expected cross within a diamond region where curvature
is low, though the view is obstructed by regions of higher curvature.

To remedy this problem we restrict our view of the K axis to focus on the smallest values
of K which in turn contribute to the largest probabilities. The resulting picture, Fig. 11, thus
predicts the regions that will appear darkest in the probability profile.

Acknowledgement We thank Phil Gressman for allowing us to include his proof of Lemma 3.4.
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